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The Schultz-Mattis-Lieb fermion formulation of the two-dimensional 
Ising model is simplified by means of long-wavelength approximations which 
become exact in the critical region. The resulting continuum theory has a 
Hamiltonian density which is shown to be identical, to within a perfect 
derivative, to that of free, spinless particles satisfying the one-dimensional 
Dirac equation. Filling the negative-energy single-particle states of momentum 
q and mass ~ gives an integral over the single-particle energies _(q2 + ~c2)1/2~ 
Because ~ varies linearly with the temperature, differentiating twice gives 
Onsager's logarithmic singularity in the specific heat. 
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1. I N T R O D U C T I O N  

T h e  I s ing  m o d e P  is o f  f u n d a m e n t a l  i m p o r t a n c e  fo r  u n d e r s t a n d i n g  the  p h e n o -  

m e n o n  o f  phase  t rans i t ions .  A n  exac t  so lu t ion  o f  the  m o d e l  in th ree -  
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dimensional space has never been achieved, so one depends very much upon 
Onsager's ~2) solution of the two-dimensional version. (The even simpler 
one-dimensional version, as we shall see shortly, does not exhibit a sharp 
phase transition.) Although Onsager's treatment was simplified by 
Kaufman, ~3) it remains a formidable tour de force of spinor algebra. 
Although impressive, this is nevertheless regrettable in view of  the central 
position this solution holds in the field of phase transitions. It would be 
useful to have available an exposition of it in a form which could be easily 
followed by an intermediate student in statistical mechanics and many-body 
theory. To attempt to fill this gap is the goal of this paper. 

There is, in fact, an alternative approach to the two-dimensional Ising 
model. This combinatorial method (4-6~ possesses considerable elegance and 
has recently been reviewed by Glasser. (7) However, it seems to have no direct 
connection with the present mainstream of  the field-theoretical formulation 
of  the problem of  phase transition. 18-m Therefore, we prefer to adhere 
essentially to the techniques used by Onsager and Kaufman. This is the 
method of the transfer matrix, which is basically a way of working through 
the system under study, progressing in a certain direction. Thus, the use 
of the transfer matrix is similar to the use of partial differential equations in 
field theory, where the coordinate describing the progression is the time 
variable t. Knowing the initial values (and derivatives) of the field variable 
at time t, we can apply the appropriate Green's function (i.e., a suitable 
solution of the partial differential equation) to find their values at a slightly 
greater time t -k At. The method of the transfer matrix works in an analogous 
way. 

Fortunately, the transfer matrix approach has been greatly simplified 
by Schultz et aL ~12~ They have noted that the dichotomy in the Ising spin 
variable ("up" or "down")  can be transformed to a "yes-or-no" question 
referring to the presence or absence of certain fictitious particles. In order to 
avoid the undesired possibility of multiple occupation of  a site by these 
particles, they are assumed to be fermions and to obey the Pauli exclusion 
principle. In the present paper, we try to present the Schultz-Mattis-Lieb 
transform in its simplest possible form. We strip the notation bare and 
concentrate on those features of it that are essential for obtaining the Onsager 
logarithmic singularity in the specific heat. Other aspects of  the formalism, 
which are necessary for calculating the spontaneous magnetization ~13 or the 
correlation functions, are omitted here. 

The enormous simplification achieved by Schultz et al. is that the 
fictitious particles that they introduce are governed by a very simple inter- 
action: This is one corresponding to the presence of a field which 
spontaneously emits and absorbs pairs of particles possessing zero net total 
momentum. This is the same kind of effect encountered in the BCS (14) theory 
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of superconductivity and can easily be handled by the methods developed 
for that subject. But rather than present the usual calculation of this 
pairing effect, we further simplify the problem in Section 4 by an additional 
transformation. This reduces the problem to that of completely free fermions 
satisfying the one-dimensional Dirac equation. In Section 5, we fill all of the 
negative-energy states and sum up to get the total ground-state energy of the 
system. This leads immediately to the Onsager formula for the logarithmic 
singularity in the specific heat. 

Let us begin with the one-dimensional version of the Ising model. We 
measure the temperature T in natural units, so that Boltzmann's constant is 
unity, and we denote the exchange coefficient by TJ ' .  Thus, the energy of 
interaction of the spins at the neighboring sites j and j + 1 is -- TJ'crja~+ 1 . 

The corresponding Boltzmann factor is exp(J'as+~aj) and the partition 
function is 

Z N  = ~ 1~ exp(J'~J+la~) (1) 
{aj} j 

Every one of the N spin variables % is summed over the two possible values 
1. Now let us denote the partial product summed over all spins j '  < j by 

~3-(a~) = Z l~ exp(J'aj,+zq~,) (2) 
{~,} J ' < j  

Replacing j in Eq. (2) by j + 1 gives by inspection 

= Z (3) 
aj 

where the 2 • 2 transfer matrix is 

y = [exp J '  exp - -J ' ]  
\exp - - J '  exp J ' I  (4) 

with eigenvalues 
i eosh J' (5) 

)t• = exp J '  ~ exp - - J '  = 2 ~ sinh J '  

and associated eigenfunctions 

1 1 (6) 

The larger eigenvalue 3+, associated with the symmetric eigenfunction 
~b+ dominates Eq. (1) for large N. Defining the effective partition function 
per spin by Zz = ~N7Z/N and taking the thermodynamic limit N ~ oo gives 

Z 1 = lim ~l/tv = A+ (7) 
N->m ~ N  

822/8/3 -4* 
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The free energy and entropy per site are consequently 

and 

F = --  T In  A+ (8) 

~F d In A+ (9) 
S - -  ~ T - - l n A + §  d l n T  

Differentiating again gives the specific heat 

~S ~ In A+ d 2 In A+ d In A+ d 2 In A+ d 2 In )~+ 
C = T o T - -  0 1 n T  + ( d l n T )  z - -  d l n J ~  + ( d l n J ' ) ~ - - J ' 2  dJ '2 

(10) 

where the exchange constant TJ' is assumed to be independent of temperature, 
so that d In T = - -d  In J'. Substitution from Eq. (5) yields 

C = s sech 2 j ,  (11) 

which exhibits a broad maximum in the vicinity of J~nax determined by 

J~n+x tanh Jmax = 1 or Jmax = 1.20 (12) 

2. F E R M I O N  F O R M A L I S M  

The horizontal and vertical coordinates in the two-dimensional Ising 
lattice will be denoted by the indices i and j, respectively. Continuing to write 
the exchange constant in the vertical direction as TJ', and writing the exchange 
constant for a horizontal bond as T J, we have the total energy of the lattice 
composed of two double summations over the entire Ising lattice, 

E = - - T J  ~ f f i j f f i + l d  - -  TJ' ~ (7i j+I(Ti j  
i j  i j  

(13) 

The transfer matrix for the vertical step j - - ~ j  § 1 is simply the direct 
product over the index i of all of the one-dimensional Ising model transfer 
matrices. Each of these individual transfer matrices has the eigenvalues 
2 cosh J' and 2 sinh J ' ,  associated with the "ground and excited" states of 
a vertical bond. Thus, if n is the total number of "excitations" and L the 
horizontal width of the lattice, the j -+ j + 1 transfer matrix is 

(2 cosh j,)L M'  = (2 cosh j,)L tanh n j ,  (14) 

where 

M'  = tanh ~ J '  = exp(--2nJ')  (15) 
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It has been convenient to introduce the new parameter jr  defined by 

exp - -2J '  = tanh J '  (16) 

which can be put into the more symmetric form 

sinh 2J' �9 sinh 2J r ~ 1 (17) 

Because the ground-state eigenvalue has been factored off, M '  represents 
the additional critical behavior exhibited by the two-dimensional Ising model 
over and above the noncritical one-dimensional model. Thus, for example, 
to the critical specific heat calculated below has to be added that of the 
one-dimensional model, Eq. (11), as background. 

We now have to study the portion of the transfer matrix which describes 
the crossing of the horizontal lines as we work our way upward in the Ising 
lattice. This involves the first double sum in Eq. (13). Since we will be working 
at a definite horizontal line, say the ( j  + 1)th line, we will suppress the j + 1 
subscript and will indicate the operators simply by the index identifying 
the vertical line on which they act. The individual spin operators can excite 
or deexcite one of the vertical lines. Following Schulz et al.,(12) we can describe 
this by creation and annihilation operators in a second quantized Fermi-  
Dirac formalism. The equivalence is given by 

t r . 
~ri,J+l(Yi+l,j+l : Ci Ci+l -@ Ci+lC i @ Ci*Ci+ 1 -~ C)~+lCi ( 1 8 )  

The four terms in Eq. (18) describe the four possibilities of creation or 
annihilation by either one of the neighboring pair of spins. In expressing the 
spin operators in this way, it is important to realize that the correspondence 
will only be correct if there is agreement between the transition matrix 
elements between all pairs of states as calculated in the two different 
formalisms. In the Fermi-Dirac notation, we can imagine that the basis 
states are products of creation operators ordered in a definite way, say with 
smaller subscripts to the left. Thus, it is quite important to establish the 
correct order of the anticommuting operators in Eq. (18). The first term, for 
example, is written so that the pair of excitations produced at sites i and i + 1 
will be in the standard order. Similarly, the second term is written so that 
the matrix element of it between the two states in which the i and i + 1 lines 
are excited and deexcited, respectively, is unity. The order chosen is such that 
the annihilation operator for site i works first, so as to remove the/-excitation. 
The annihilation operator associated with site i -~ 1 then follows. Similarly, 
the third term describes the replacement of an excitation at site i ~- 1 by 
by an excitation at site i, or in other words, an exchange of the excitation from 
one line to the other. Similarly, the last term describes the reverse exchange. 
Special attention has to be given to the cyclic condition which applies at 
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the end of the chain. We imagine that the Ising lattice in the direction of  
increasing i closes itself after the maximum value of i = L -- 1 is reached; 
i.e., i = L is identical to i = 0. Thus, we have the identity az.j ~- a0,j, 
which requires 

t t - -  C[-leO cotcL-1 (19) O'L_I,#+IO'L,~.+I ~ -  O'L_I,#+IO'0,#+ 1 = C 0 CL--1 @" CL_IC 0 

The terms describing the exchange of excitation now have a negative sign 
associated with the reordering which is required for the creation operators. 
Here we are assuming that we are dealing with a state having an even number 
of excitations. (The interaction described by the horizontal bonds leaves the 
oddness or evenness of  the states unchanged. Consequently, there is a kind 
of  parity operator which is a good quantum number in the present problem.) 
After the annihilation operator has acted, an odd number of operator 
exchanges is required in order to bring the remaining creation operator into 
its correct standard position. It is convenient to change the order in the first 
two terms of Eq. (19), which gives 

" L - I , j + I ' ~ L , J + I  = - - c ~ _ i C o *  - -  CoCL_~ - -  c ~ _ i C o  - -  Co*C~_~ (20) 

This expression can be compared with the equation obtained by formally 
writing down Eq. (6) for the case i = L --  1: 

O'L_1,#+10"L,#+l = CtL_lCL t ~-  CLCL_ 1 "~- CtL_ICL -1- C2CL_ 1 (21) 

Thus, we can introduce a second quantized operator for site L provided that 
we satisfy the condition 

eL ~= --Co (22) 

The sign in Eq. (22) becomes positive for odd states. These, however, are not 
important in the temperature region T > T~, where T~ is the critical temper- 
ature. Therefore, we ignore this alternative possibility in the present work. 
Our principal interest is the study of the onset of long-range correlation as 
the critical point is approached from above. Equation (22) provides a kind 
of periodic boundary condition on the expansion of the second quantized 
operators in terms of their Fourier components. Introducing the sum over 
the wave number q and normalizing to the total width L,  we have the second 
quantized operators at site v given by the expansions 

c~ = L -1/~ ~ e~qcq (23) 
q 

and 
c~* = L -1t2 ~ e-i~qcq * (24) 

q 
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Equation (22) fixes the discrete values taken on by q as the half-odd integer 
multiples of the interval 

Aq = 2~/L (25) 

(In the case of the odd states, the quantization of q is specified as integer 
multiples of Aq.) 

It is useful to study separately the exchange terms in Eq. (18). These 
are diagonal in the excitation number operator n. Summing over all sites, 
we find 

Z cfcv+l = L -1 Z c~*cq, Z exp[iv(q' -- q) @ iq'] 
v q q ,  v 

: ~ c~*cr iq') ~.q, 

: ~ n~ exp iq (26) 
q 

where we write the number operator for wave number mode q as 
n~ ~ c~*c~. Note that n = Zq n~. Similarly, we obtain 

~, c~+lc ~ = ~ nqe -iq (27) 
u q 

Ignoring for the moment the perturbing effect of the creation and annihilation 
of pairs [i.e., the other two terms in Eq. (18)], we obtain as a first approxi- 
mation to the portion of the transfer matrix associated with the horizontal 
bonds 

exp (2J ~ n~ cos q) (28) M 
q 

With 

M ' =  exp (--23' ~ nq) (29) 
q 

we find for the complete transfer matrix in this approximation the product 

M M '  = ]-[ exp[--2nq(]' -- J cos q)] (30) 
q 

The thermodynamic problem of the evaluation of the partition function is 
equivalent to finding the largest eigenvalue of the transfer matrix. From 
Eq. (30), we see that this is given by no excitation (all n~ : 0), provided 
that J '  > J. But as the temperature is lowered, J increases and ] '  decreases, 
so that eventually an instability will set in at q = 0. This establishes the critical 
point as 

Jc' = Jo (31) 
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Substitution from Eq. (17) yields the Kramers-Wannier equation 

sinh 2J~ �9 sinh 2 J /  = 1 (32) 

In the case of an isotropic lattice where J ' =  J, Eq. (32) requires 
sinh 2J~ = 1, or Jc = 0.441. 

3. P A I R  I N T E R A C T I O N S  

Now we study the perturbing effect of the pair creation and annihilation 
processes. Summing over all sites gives 

2 G+~G = L-~ 2 cqc~, 2 exp[iv(q -- q') q- iq] 
v q q t  v 

= ~ cqcq,(exp iq) 3~_q, = ~, c~c_~ exp iq 
q q '  q 

~ [(exp iq) -- (exp --iq)] CqC_q 
q>O 

= 2i ~ (sin q)cqc_q ~ 2i ~ qcqc_q (33) 
q>O q>O 

Here, we have taken note of the fact that the terms for negative q are not 
independent of those for q > 0. We have also introduced the approximation 
sin q ~ q, valid for long wavelengths (q ~ 1). Including now the pair pro- 
cesses, we have to return to Eq. (28) and write the factor associated with the 
horizontal bonds more completely as 

where 

M = exp (2J,~ q- 2 A~@a) = exp(2J. + (9) 
q 

(34) 

o = y, A~G (35) 
q 

G = i(c~c_~ - cL~c~ ~) (36) 

and 

Aq = 2Jq (37) 

It is convenient to write the combined transfer operator, including the 
effects of both the horizontal and vertical bonds, in the symmetrized form 

(M')I/~ M(M')Z/~ = [exp(--J'n)] M exp(--Y'n) (38) 
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In the q = 0 limit, where (9 can be neglected, M and M' commute and 
Eq. (38) reduces to Eq. (32). With the approximation cos q ~ 1, which has 
already been used in Eq. (34), this can be written in the simplified form 

exp[--2nO' -- J)] ~ 1 -- 2nO' -- J) 

Thus, in the vicinity of the critical point, J '  -- J ~ 0, and the transfer matrix 
differs only slightly from unity, though this is not true for the individual 
factors in Eq. (38). This makes possible a continuum treatment of the problem. 
We now have to calculate the change in M produced by (9 treated as a first- 
order perturbation. This approach is justified by the fact that the long wave- 
lengths dominate in the approach to the critical point. For these, the "coupling 
constants" are A~ ~ 1. 

In calculating M to first order in (9, the lack of commutativity between 
the operators (9 and n is an essential complication. This is a familiar problem 
in quantum field theory and can be handled here by dividing M up into a very 
large number N of equal factors, each equal to M 1IN ~ 1 § 2Jn/N § (9/N. 
We can set (9 equal to zero in all of the factors except one, which gives 

M = lim (M1 / N )  N 
N--)r 

N @ @ ~ )  N'--I ( 2Jn]N lim r (1 2Jn]N-N' 6) (1 = lim \1 + + 

p *  1 
= e 2Jn @ | dx e2Sn{1-~}Oe esnx 

. 1  o f+J 
= e 2Jn @ (1/2J) dy eS"e-'~y(ge~Ue s'~ 

_or 

= e ~sn @ (1/2J) e s~ dy (9lnt(Y) eJn (39) 
--J 

where 

(Pint(y) =-- e-r (40) 

is a kind of "interaction picture" operator. Note that (gint(y) is not Hermitian, 
but instead satisfies the adjoint condition (9int(y)t = (hn~(--y). When we 
substitute Eq. (40) into Eq. (38), we can make the approximation j '  = J in 
the second term (which is already small), to obtain 

(M') 1/2 M(M')  1/2 = exp[--2(J' -- J) n] @ (1/2J) f+s_s dy (91n*(Y) 

+d 
1 -- 2(J' -- J ) n  -}- (1/2J) ( dy (gmt(y) 

, 1  --y 

exp [--2(.]' J) n + (1/2J) f+s ] (41) 
- J  
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I t i s  easy to see that the annihilation and creation terms of (9 acquire factors 
e • respectively, by virtue of the transformation of Eq. (40). I.e., 

( . 0 r  = ie2Uc,e_r -- ie-2~c*_~e~ * (42) 

so that the integration yields 

+o" 

f O~.int(y ) dy = (sinh 2J) Oq (43) 
- d  

Substitution into Eq. (41) gives 

1 /.+s sinh 2J 
2J-- )_s  dy (0int(y) -- 2J  q>0~ Aq&q = (sinh 2J) ~>0 ~ qOq. (44) 

Equation (44), when substituted into Eq. (41), solves the problem of 
expressing the transfer matrix in terms of the small operators 2(J' -- J ) n  
and qOq. A minor defect of this result is that it depends upon the exchange 
constant J through the factor sinh 2J. A more satisfactory J-independent 
universal continuum formulation is obtained by changing the vertical scale. 
We introduce a continuum coordinate t in place of the discrete variable j. 
Measured in this new coordinate, the spacing of the horizontal rows is taken 
to be 

At = sinh 2J (45) 

which permits us to write the transfer matrix in the universal form 

(M,)Z/2 M(M,)I/2 = e-C~)H (46) 

with the "Hamiltonian operator" 

H = K n -  ~ q(gq (47) 
q>0 

and the reciprocal correlation length 

K = 2 0 '  -- J)/sinh 2J (48) 

4. DIRAC E Q U A T I O N  

Just as we have replaced the discrete variable j by the continuous 
variable t, we can replace the other lattice coordinate i by the continuous 
variable x. Integrating over x, we find the identity 

f z dx q~(x) V~(x) = --2i ~ qeqc_q (49) 
0 q>O 
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so that we can equally well express the "Hamil tonian" by the integral 

= f dx H(x) + �89 (50) H 

where the "Hamiltonian density" is 

H(x) = ~(r Vr --  r r e*)  + K(r162 -- -~) (51) 

We are now writing the continuous fermion field operator as r in place of 
the site operator c, of Eq. (23). The gradient and nongradient terms of 
Eq. (51) are reminiscent of the Dirac equation (15) written in one space 
dimension with a Hamiltonian density of the form 

HD(X) = --i~b+c~ Vr q- ,@+]3r (52) 

The particle mass is x and we chose the units so that the velocity of light is 
unity. The Dirac matrices satisfy the conditions 

(53a) 

(53b) ~2 =/33 = 1 

These equations are fulfilled by 

(0 --i) 
o~ = cr 2 ~--- i 0 (54a) 

(54b) 

where cr i are the Pauli spin matrices. Thus, r the second quantized Dirac 
field in one dimension, has only two components. These are required for 
describing the positive- and negative-energy states. The further spin 
degeneracy which appears in three dimensions is not required in one 
dimension. 

Because of the two-component  nature of  r it is not  possible to 
transform Eq. (51) directly into Eq. (52). It is first necessary to double the 
number of degrees of freedom in the Ising model. This we accomplish 
by simply imagining that there is a second Ising lattice superposed 
on the first but not interacting with it. We then obtain a two-component 
Ising field r which can be identified with the Dirac field r The desired 
connection is given by ~ 

1 (q~l + i r  (55) r + ;r 

~This form for r is somewhat related to Nambu's (26~ two-component formulation of 
superconductivity theory. 
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The different components of the Ising field are assumed to anticommute 
with one another and to satisfy the canonical anticommutation relations 

{~i(x), q~[(x')} = ~i~ 3(x -- x') (56a) 

{r Cj(x')} = 0 (56b) 

We verify that the components of r also satisfy the canonical anticom- 
mutation relations, by virtue of Eqs. (55) and (56a, b). We now confirm that 
the gradient terms in Eqs. (52) and (53) match exactly: 

(01 

+ ~ i (r162  - r 1 6 2  + r  - r  

= ~ ( r 1 6 2  - r162  + �89162162 - r  

-k �89 V(~z~2 + ~2t~i +) (57) 

The last term in Eq. (57) is a perfect derivative and consequently disappears 
in the space integration. It does not contribute to the total energy. The 
remaining terms are precisely the desired gradient terms of Eq. (51). The 
mass term in Eq. (52) is 

= l [~ l t ,  ~1] -~- 1-[~2t, ~2] @ l i{~lt ,  @2} --  li{~2t, q~z} (58) 

The anticommutators vanish by Eq. (56a), while application of Eq. (56a) to 
the commutators gives 

The delta function is smeared out over a lattice spacing because of the cutoff 
of q at the maximum wave number ~r [see Eq. (25)]. Therefore 5(0) is equal 
to unity rather than to infinity and the correspondence to Eq. (51) is complete 
[i.e., J" dx(H{q~} + H{~2}) = I dx HD(X)]. 

This completes our identification of the two-dimensional Ising model 
with the Dirac equation for spinless fermions moving freely without inter- 
action in one-dimensional space# From Eq. (46), we see that the largest 
eigenvalue of the transfer matrix will be determined by the ground-state 
eigenvalue Ec of the Dirac Hamiltonian 

HD ~ f dx gv(x) (60) 

4 For an alternative equivalence, see Suzuki. (m 
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This is obtained by filling up all of the negative-energy single-particle states, 

EG : - -  2 ( K2-k qZ)a/~= L f ~ ' d q  (K2q - q2)~/.z (61) 
q 77 

Here, we have replaced the upper limit ~- by an effective cutoff q~, since the 
long wavelengths which underlie the continuum approximation are not 
accurate for q values of the order of magnitude of unity. 

5. CRIT ICAL SPECIFIC H E A T  

The exchange constant and the temperature enter the continuum model 
only through the correlation length by virtue of Eq. (48). Thus, changes in 
Y~ can be absorbed by corresponding changes in the temperature scale. The 
normalized derivative of K evaluated at the transition temperature is 

dK T~ d• so TK' =~ T ~  = --Y~j- 

_ 2 _ 2 ( + _ j ,  aJ'  
sinh 2J 0 dY ! ~ sinh 2de dY' ] c 

With 

from Eq. (16), we find 

J '  = --�89 In tanh J '  

(62) 

(63) 

dJ'/dJ'  = --  1/sinh 2J'  (64) 

Since two temperature differentiations are required to find the specific heat, 
we are interested in the square of T•'. Including the scale factor of Eq. (45) 
and substituting from Eq. (64) gives the characteristic constant 

Co = (sinh 2Jc)(TK') 2 

( ' Jo = 4 ~Jc + 
sinh 

symmetric under the exchange Jc +-+ J / .  For an isotropic lattice, sinh 2J~ = 1, 

Yo = 0.441 and Co = 3.11 

To get the free energy per site, we have to divide the total ground-state 
energy (61) by the total number of vertical lines 2L (for the two noninteracting 
lattices). Therefore, the entropy is proportional to the derivative 

dE~/RL K fi~ dq 
dK --  ~ (KS + q~)1/2 (66) 
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The constant  term --�89 f rom (50) has been neglected. The singular par t  o f  
the second derivative is 

d~(EG/2L) 1 (% dq _ 1 In 2qo (67) 
dK ~ 2 ~  Jo ( x2 + q~)t/~ - -  2-~- tc 

Consequently,  the singular specific heat is 

C = - - C  o d2(Ec/2L) Co In 2qc C~ In 2qc 
&2 - 2, ,  ~ 2, ,  ~ r c ~ ' - ( 7 " -  r ) / r 0  (68) 

exhibiting the Onsager logari thmic singularity, corresponding to the critical 
index o~ = 0. The additive constant  is undetermined in the present cont inuum 
solution. The multiplicative constant  for  an isotropic lattice equals 
Co/2rr = 0.495. 
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